Distributed Control Strategy of Single-Phase Battery Systems for Compensation of Unbalanced Active Powers in a Three-Phase Four-Wire Microgrid

Author:

Pinthurat WatcharakornORCID,Hredzak Branislav

Abstract

Unbalanced active powers can affect power quality and system reliability due to high penetration and uneven allocation of single-phase photovoltaic (PV) rooftop systems and load demands in a three-phase four-wire microgrid. This paper proposes a distributed control strategy to alleviate the unbalanced active powers using distributed single-phase battery storage systems. In order to balance the unbalanced active powers at the point of common coupling (PCC) in a distributed manner, the agents (households’ single-phase battery storage systems) must have information on the active powers and phases. Inspired by supervised learning, a clustering approach was developed to use labels in order to match the three-phase active powers at the PCC with the agents’ phases. This enables the agent to select the correct active power data from the three-phase active powers. Then, a distributed power balancing control strategy is applied by all agents to compensate the unbalanced active powers. Each agent calculates the average grid power based on information received from its neighbours so that all agents can then cooperatively operate in either charging or discharging modes to achieve the compensation. As an advantage, the proposed distributed control strategy offers the battery owners flexibility to participate in the strategy. Case studies comparing performance of local, centralized, and the proposed distributed strategy on a modified IEEE-13-bus test system with real household PV powers and load demands are provided.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3