Computational Design Analysis of a Hydrokinetic Horizontal Parallel Stream Direct Drive Counter-Rotating Darrieus Turbine System: A Phase One Design Analysis Study

Author:

Crooks John M.,Hewlin Rodward L.,Williams Wesley B.ORCID

Abstract

This paper introduces a phase one computational design analysis study of a hydrokinetic horizontal parallel stream direct-drive (no gear box) counter-rotating Darrieus turbine system. This system consists of two Darrieus rotors that are arranged in parallel and horizontal to the water stream and operate in counter-rotation due to the incoming flow. One of the rotors directly drives an armature coil rotor and the other one a permanent magnet generator. A two-dimensional (2-D) and three-dimensional (3-D) computational fluid dynamic (CFD) simulation study was conducted to assess the hydrokinetic performance of the design. From a high computational cost and time perspective, the simulation setup was reduced from a 3-D to a 2-D analysis. Although useful information was obtained from the 3-D simulations, the output performance could be assessed with the 2-D simulations without compromising the integrity of the turbine output results. A scaled experimental design prototype was developed for static (non-movement of the rotors with dynamic fluid flow) particle image velocimetry (PIV) studies. The PIV studies were used as a benchmark for validating and verifying the CFD simulations. This paper outlines the prototype development, PIV experimental setup and results, computational simulation setup and results, as well as recommendations for future work that could potentially improve overall performance of the proposed design.

Funder

North Carolina Ocean and Renewable Energy Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3