Forecasting Hydrogen Production from Wind Energy in a Suburban Environment Using Machine Learning

Author:

Javaid AliORCID,Javaid Umer,Sajid MuhammadORCID,Rashid Muhammad,Uddin EmadORCID,Ayaz Yasar,Waqas AdeelORCID

Abstract

The environment is seriously threatened by the rising energy demand and the use of conventional energy sources. Renewable energy sources including hydro, solar, and wind have been the focus of extensive research due to the proliferation of energy demands and technological advancement. Wind energy is mostly harvested in coastal areas, and little work has been done on energy extraction from winds in a suburban environment. The fickle behavior of wind makes it a less attractive renewable energy source. However, an energy storage method may be added to store harvested wind energy. The purpose of this study is to evaluate the feasibility of extracting wind energy in terms of hydrogen energy in a suburban environment incorporating artificial intelligence techniques. To this end, a site was selected latitude 33.64° N, longitude 72.98° N, and elevation 500 m above mean sea level in proximity to hills. One year of wind data consisting of wind speed, wind direction, and wind gust was collected at 10 min intervals. Subsequently, long short-term memory (LSTM), support vector regression (SVR), and linear regression models were trained on the empirically collected data to estimate daily hydrogen production. The results reveal that the overall prediction performance of LSTM was best compared to that of SVR and linear regression models. Furthermore, we found that an average of 6.76 kg/day of hydrogen can be produced by a 1.5 MW wind turbine with the help of an artificial intelligence method (LSTM) that is well suited for time-series data to classify, process, and predict.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference61 articles.

1. Green methods for hydrogen production;Int. J. Hydrogen Energy,2012

2. Constraints of fossil fuels depletion on global warming projections;Energy Policy,2011

3. A comparison of the global warming effects of wood fuels and fossil fuels taking albedo into account;GCB Bioenergy,2015

4. Analysis of Electric Power Generation Growth in Pakistan: Falling into the Vicious Cycle of Coal;Eng,2021

5. Power Systems Planning (2022, March 16). Indicative Generation Capacity Expansion Plan (2018-40). Available online: https://nepra.org.pk/Admission%20Notices/2019/09-September/IGCEP%20Plan%20(2018-40).pdf.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3