Structural Performance of Additively Manufactured Cylinder Liner—A Numerical Study

Author:

Alshwawra AhmadORCID,Abo Swerih Ahmad,Sakhrieh AhmadORCID,Dinkelacker FriedrichORCID

Abstract

Climate change is exacerbated by vehicle emissions. Furthermore, vehicle pollution contributes to respiratory and cardiopulmonary diseases, as well as lung cancer. This requires a drastic reduction in global greenhouse gas emissions for the automobile industry. To address this issue, researchers are required to reduce friction, which is one of the most important aspects of improving the efficiency of internal combustion engines. One of the most important parts of an engine that contributes to friction is the piston ring cylinder liner (PRCL) coupling. Controlling the linear deformation enhances the performance of the engine and, as a result, contributes positively to its performance. The majority of the tests to study the conformability between cylinder liner and piston were carried out on cylinder liners made of cast iron. It is possible to improve the performance of piston ring cylinder liner couplings by implementing new and advanced manufacturing techniques. In this work, a validated finite element model was used to simulate the performance when advanced manufactured materials were adapted. The deformation of the cylinder liner due to thermal and mechanical loads is simulated with five different additive manufactured materials (Inconel 625, Inconel 718, 17-4PH stainless steel, AlSi10Mg, Ti6Al4V). Simulated roundness and straightness errors, as well as maximum deformation, are compared with conventional grey cast iron liner deformation. Some additive manufactured materials, especially Ti6Al4V, show a significant reduction in deformation compared to grey cast iron, both in bore and circumferential deformation. Results show that Ti6Al4V can reduce maximum liner deformation by 36%. In addition, the roundness improved by 36%. The straightness error when Ti6Al4V was used also improved by 44% on one side, with an average of 20% over the four sides. Numerical results indicate that additive manufactured materials have the potential to reduce friction within the piston liner arrangement of internal combustion engines.

Funder

Leibniz University Hannover

Open Access Fund of the Leibniz Universität Hannover

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3