Deformation Patterns and Failure Mechanisms of Soft-Hard-Interbedded Anti-Inclined Layered Rock Slope in Wolong Open-Pit Coal Mine

Author:

Chen Guohong1,Cai Peng2,Zhan Jiewei13ORCID,Yang Yueqiao1,Yao Zhaowei1,Yu Zhaoyue1

Affiliation:

1. College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China

2. Inner Mongolia Second Hydrogeology Engineering Geology Exploration Co., Ltd., Ordos 017000, China

3. Key Laboratory of Western China’s Mineral Resources and Geological Engineering, Ministry of Education, Chang’an University, Xi’an 710054, China

Abstract

Since the beginning of spring 2022, successive landslides have occurred in the eastern pit slope of the Wolong Coal Mine in Qipanjing Town, Otog Banner, Inner Mongolia, which has adversely affected the mine’s production safety. This study aims to reveal the deformation patterns and failure mechanisms of landslides. Firstly, this study establishes the stratigraphic structure of the eastern pit slope of the Wolong Coal Mine using extensive field geological surveys combined with unmanned aerial vehicle photography, drilling, and comprehensive physical exploration techniques. Indoor geotechnical tests and microscopic experiments reveal that rock mass typically exhibits the characteristics of expansibility and water sensitivity. Moreover, the mechanical parameters of the rock mass were determined using a combination of the window sampling method, the Geological Strength Index, and the Hoek–Brown strength criterion estimation theory. Finally, this study consolidates the previously mentioned insights and employs FLAC3D (7.0) software to assess the stress–strain characteristics of the excavated slope. The results indicate that the deformation mode of the Wolong open pit coal mine is the toppling failure of soft-hard-interbedded anti-inclined layered rock slopes. The unloading effect and rock expansion-induced softening lead to stress concentration at the slope corners and more substantial deformation, thereby accelerating upper slope deformation. The deformation and destabilization process of landslides is categorized into four stages: the initial deformation stage, the development stage of lateral shear misalignment, the development stage of horizontal tensile-shear damage, and the slip surface development to the preslip stage. This research offers valuable references and engineering insights for future scientific investigations and the prevention of similar slope-related geological hazards.

Funder

the National Natural Science Foundation of China

the Young Talent Fund of Xi’an Association for Science and Technology

the Fundamental Research Funds for the Central Universities, CHD

Publisher

MDPI AG

Reference48 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3