CSEF-Net: Cross-Scale SAR Ship Detection Network Based on Efficient Receptive Field and Enhanced Hierarchical Fusion

Author:

Zhang Handan1,Wu Yiquan1

Affiliation:

1. School of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

Ship detection using synthetic aperture radar (SAR) images is widely applied to marine monitoring, ship identification, and other intelligent maritime applications. It also improves shipping efficiency, reduces marine traffic accidents, and promotes marine resource development. Land reflection and sea clutter introduce noise into SAR imaging, making the ship features in the image less prominent, which makes the detection of multi-scale ship targets more difficult. Therefore, a cross-scale ship detection network for SAR images based on efficient receptive field and enhanced hierarchical fusion is proposed. In order to retain more information and lighten the weight of the network, an efficient receptive field feature extraction backbone network (ERFBNet) is designed, and the multi-channel coordinate attention mechanism (MCCA) is embedded to highlight the ship features. Then, an enhanced hierarchical feature fusion network (EHFNet) is proposed to better characterize the features by fusing information from lower and higher layers. Finally, the feature map is input into the detection head with improved bounding box loss function. Using SSDD and HRSID as experimental datasets, average accuracies of 97.3% and 90.6% were obtained, respectively, and the network performed well in most scenarios.

Funder

National Nature Science Founding of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. YOLOv7-Bw: A Dense Small Object Efficient Detector Based on Remote Sensing Image;IECE Transactions on Intelligent Systematics;2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3