YOLOv7-Bw: A Dense Small Object Efficient Detector Based on Remote Sensing Image

Author:

Jin Xuebo1ORCID,Tong Anshuo1,Ge Xudong1,Ma Huijun1ORCID,Li Jiaxi1,Fu Heran1,Gao Longfei1

Affiliation:

1. School of Computer Science and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

Abstract

In recent years, deep learning techniques have been increasingly applied to the detection of remote sensing images. However, the substantial size variation and dense distribution of objects in these images present significant challenges to detection algorithms. Current methods often suffer from low efficiency, missed detections, and inaccurate bounding boxes. To address these issues, this paper presents an improved YOLO algorithm, YOLOv7-bw, designed for efficient remote sensing image detection, thereby advancing object detection applications in the remote sensing industry. YOLOv7-bw enhances the original SPPCSPC pooling pyramid network by incorporating a Bi-level Routing Attention module, which focuses on densely populated target areas to improve the network's feature extraction capabilities. Additionally, it introduces a dynamic non-monotonic WIoUv3 loss function to replace the original CIoU loss function. This substitution ensures that the loss function's gradient allocation strategy aligns more effectively with the current detection scenario, enhancing the network's focus on the detection object. Through comparative experiments on the DIOR remote sensing image dataset, we found that YOLOv7-bw achieved a high mAP@0.5 of 85.63% and a high mAP@0.5:0.95 of 65.93%, surpassing the previous results of 83.7% and 63.9% by approximately 1.93% and 2.03%, respectively. Moreover, compared with commonly used algorithms, YOLOv7-bw demonstrated superior performance, thereby validating the feasibility and enhanced applicability of our proposed algorithm for remote sensing image detection.

Publisher

Institute of Emerging and Computer Engineers Inc

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3