Abstract
Light-responsive nanocomposites have become increasingly attractive in the biomedical field for antibacterial applications. Visible-light-activated metallic molybdenum disulfide nanosheets (1T-MoS2 NSs) and plasmonic gold nanorods (AuNRs) with absorption at a wavelength of 808 nm were synthesized. AuNR nanocomposites decorated onto 1T-MoS2 NSs (MoS2@AuNRs) were successfully prepared by electrostatic adsorption for phototherapy applications. Based on the photothermal effect, the solution temperature of the MoS2@AuNR nanocomposites increased from 25 to 66.7 °C after 808 nm near-infrared (NIR) laser irradiation for 10 min. For the photodynamic effect, the MoS2@AuNR nanocomposites generated reactive oxygen species (ROS) under visible light irradiation. Photothermal therapy and photodynamic therapy of MoS2@AuNRs were confirmed against E. coli by agar plate counts. Most importantly, the combination of photothermal therapy and photodynamic therapy from the MoS2@AuNR nanocomposites revealed higher antibacterial activity than photothermal or photodynamic therapy alone. The light-activated MoS2@AuNR nanocomposites exhibited a remarkable synergistic effect of photothermal therapy and photodynamic therapy, which provides an alternative approach to fight bacterial infections.
Funder
Ministry of Science and Technology, Taiwan
Subject
General Materials Science,General Chemical Engineering
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献