Injectable Photothermal PDA/Chitosan/β‐Glycerophosphate Thermosensitive Hydrogels for Antibacterial and Wound Healing Promotion

Author:

Liu Dingkun1,Chen Jinbing1,Gao Linjuan1,Chen Xing1,Lin Liujun1,Wei Xia1,Liu Yuan1,Cheng Hui12ORCID

Affiliation:

1. Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology Fujian Medical University 88 Jiaotong Road Fuzhou Fujian 350004 China

2. Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics School and Hospital of Stomatology Fujian Medical University 246 Yangqiao Zhong Road Fuzhou Fujian 350002 China

Abstract

AbstractControlling infections while reducing the use of antibiotics is what doctors as well as researchers are looking for. As innovative smart materials, photothermal materials can achieve localized heating under light excitation for broad‐spectrum bacterial inhibition. A polydopamine/chitosan/β‐glycerophosphate temperature‐sensitive hydrogel with excellent antibacterial ability is synthesized here. Initially, the hydrogel has good biocompatibility. In vitro experiments reveal its noncytotoxic property when cocultured with gingival fibroblasts and nonhemolytic capability. Concurrently, the in vivo biocompatibility is confirmed through liver and kidney blood markers and staining of key organs. Crucially, the hydrogel has excellent photothermal conversion performance, which can realize the photothermal conversion of hydrogel up to 3 mm thickness. When excited by near‐infrared light, localized heating is attainable, resulting in clear inhibition impacts on both Staphylococcus aureus and Escherichia coli, with the inhibition rates of 91.22% and 96.69%, respectively. During studies on mice's infected wounds, it is observed that the hydrogel can decrease S. aureus’ presence in the affected area when exposed to near‐infrared light, and also lessen initial inflammation and apoptosis, hastening tissue healing. These findings provide valuable insights into the design of antibiotic‐free novel biomaterials with good potential for clinical applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3