Deep-Ultraviolet (DUV)-Induced Doping in Single Channel Graphene for Pn-Junction

Author:

Ali AsifORCID,Kim So-YoungORCID,Hussain Muhammad,Jaffery Syed Hassan Abbas,Dastgeer GhulamORCID,Hussain SajjadORCID,Anh Bach Thi Phuong,Eom JonghwaORCID,Lee Byoung HunORCID,Jung JongwanORCID

Abstract

The electronic properties of single-layer, CVD-grown graphene were modulated by deep ultraviolet (DUV) light irradiation in different radiation environments. The graphene field-effect transistors (GFETs), exposed to DUV in air and pure O2, exhibited p-type doping behavior, whereas those exposed in vacuum and pure N2 gas showed n-type doping. The degree of doping increased with DUV exposure time. However, n-type doping by DUV in vacuum reached saturation after 60 min of DUV irradiation. The p-type doping by DUV in air was observed to be quite stable over a long period in a laboratory environment and at higher temperatures, with little change in charge carrier mobility. The p-doping in pure O2 showed ~15% de-doping over 4 months. The n-type doping in pure N2 exhibited a high doping effect but was highly unstable over time in a laboratory environment, with very marked de-doping towards a pristine condition. A lateral pn-junction of graphene was successfully implemented by controlling the radiation environment of the DUV. First, graphene was doped to n-type by DUV in vacuum. Then the n-type graphene was converted to p-type by exposure again to DUV in air. The n-type region of the pn-junction was protected from DUV by a thick double-coated PMMA layer. The photocurrent response as a function of Vg was investigated to study possible applications in optoelectronics.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3