Abstract
It is shown for the first time that the vacuum poling of soda-lime silicate glass and the subsequent processing of the glass in a melt containing silver ions results in the formation of silver nanoparticles buried in the subanodic region of the glass at a depth of 800–1700 nm. We associate the formation of nanoparticles with the transfer of electrons from negatively charged non-bridging oxygen atoms to silver ions, their reduction as well as their clustering. The nanoparticles do not form in the ion-depleted area just beneath the glass surface, which indicates the absence of a spatial charge (negatively charged oxygen atoms) in this region of the vacuum-poled glass. In consequence, the neutralization of the glass via switching of non-bridging oxygen bonds to bridging ones, which leads to the release of oxygen, should occur in parallel with the shift of calcium, magnesium, and sodium ions into the depth of the glass.
Funder
Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies
Subject
General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献