Author:
Milessi-Esteves Thais,Corradini Felipe,Kopp Willian,Zangirolami Teresa,Tardioli Paulo,Giordano Roberto,Giordano Raquel
Abstract
Many approaches have been considered aimed at ethanol production from the hemicellulosic fraction of biomass. However, the industrial implementation of this process has been hindered by some bottlenecks, one of the most important being the ease of contamination of the bioreactor by bacteria that metabolize xylose. This work focuses on overcoming this problem through the fermentation of xylulose (the xylose isomer) by native Saccharomyces cerevisiae using xylo-oligomers as substrate. A new concept of biocatalyst is proposed, containing xylanases and xylose isomerase (XI) covalently immobilized on chitosan, and co-encapsulated with industrial baker’s yeast in Ca-alginate gel spherical particles. Xylo-oligomers are hydrolyzed, xylose is isomerized, and finally xylulose is fermented to ethanol, all taking place simultaneously, in a process called simultaneous hydrolysis, isomerization, and fermentation (SHIF). Among several tested xylanases, Multifect CX XL A03139 was selected to compose the biocatalyst bead. Influences of pH, Ca2+, and Mg2+ concentrations on the isomerization step were assessed. Experiments of SHIF using birchwood xylan resulted in an ethanol yield of 0.39 g/g, (76% of the theoretical), selectivity of 3.12 gethanol/gxylitol, and ethanol productivity of 0.26 g/L/h.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献