Production of sugars from mixed hardwoods for use in the synthesis of sugar fatty acid esters catalyzed by immobilized‐stabilized derivatives of Candida antarctica lipase B

Author:

Gonçalves Maria Carolina Pereira12ORCID,Cansian Ana Bárbara Moulin1,Tardioli Paulo Waldir1ORCID,Saville Bradley A.2ORCID

Affiliation:

1. Postgraduate Program in Chemical Engineering, Department of Chemical Engineering, Laboratory of Enzyme Technologies Federal University of São Carlos (UFSCar) São Paulo Brazil

2. Postgraduate Program in Chemical Engineering, Department of Chemical Engineering, Bioprocess Engineering Laboratory University of Toronto (UofT) Toronto Ontario Canada

Abstract

AbstractThe synthesis of sugar fatty acid esters (SFAEs) from lignocellulosic biomass and oleic acid (C18:1) was catalyzed by immobilized‐stabilized derivatives of Candida antarctica lipase B in a methyl ethyl ketone medium. After steam‐explosion pretreatment of mixed hardwoods and enzymatic hydrolysis at 15%wt solids, xylose and glucose were purified/concentrated to a mass ratio of ~3 to 1. These lignocellulosic sugars were superior to commercial sugars as the carbohydrate source for the esterification reaction in terms of sugar conversions. The highest conversions were obtained using 1.5% w/v of Novozyme 435 (N435, uncoated) as the biocatalyst for the synthesis of SFAEs. Coating the N435 with polyethyleneimine (PEI) prevented enzyme leakage into the reaction medium and produced 35% and 50% higher xylose and glucose conversions to SFAEs, respectively, at the same enzyme loading. After six 24 h reuse cycles with the PEI‐coated N435, xylose conversion decreased by 44%, while a 65% reduction in xylose conversion was observed with the uncoated lipase. Mass spectrometry analysis confirmed the production of xylose and glucose mono‐ and di‐esters. Our purified product presented an emulsion capacity (EC) close to that of a commercial sugar ester and the ECs of the xylose oleate, laurate, and palmitate synthesized in previous studies. © 2023 The Authors. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Natural Sciences and Engineering Research Council of Canada

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3