High-Performing PGM-Free AEMFC Cathodes from Carbon-Supported Cobalt Ferrite Nanoparticles

Author:

Peng Xiong,Kashyap Varchaswal,Ng Benjamin,Kurungot Sreekumar,Wang Lianqin,Varcoe John,Mustain William

Abstract

Efficient and durable non-precious metal electrocatalysts for the oxygen reduction reaction (ORR) are highly desirable for several electrochemical devices, including anion exchange membrane fuel cells (AEMFCs). Here, cobalt ferrite (CF) nanoparticles supported on Vulcan XC-72 carbon (CF-VC) were created through a facile, scalable solvothermal method. The nano-sized CF particles were spherical with a narrow particle size distribution. The CF-VC catalyst showed good ORR activity, possessing a half-wave potential of 0.71 V. Although the intrinsic activity of the CF-VC catalyst was not as high as some other platinum group metal (PGM)-free catalysts in the literature, where this catalyst really shined was in operating AEMFCs. When used as the cathode in a single cell 5 cm−2 AEMFC, the CF-VC containing electrode was able to achieve a peak power density of 1350 mW cm−2 (iR-corrected: 1660 mW cm−2) and a mass transport limited current density of more than 4 A cm−2 operating on H2/O2. Operating on H2/Air (CO2-free), the same cathode was able to achieve a peak power density of 670 mW cm−2 (iR-corrected: 730 mW cm−2) and a mass transport limited current density of more than 2 A cm−2. These peak power and achievable current densities are among the highest reported values in the literature to date.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3