Advanced electrocatalysts for fuel cells: Evolution of active sites and synergistic properties of catalysts and carrier materials

Author:

Kong Zhijie12ORCID,Wu Jingcheng1,Liu Zhijuan1,Yan Dafeng3,Wu Zhi‐Peng4,Zhong Chuan‐Jian2

Affiliation:

1. Henan Key Laboratory of Crystalline Molecular Functional Materials Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou China

2. Department of Chemistry State University of New York at Binghamton Binghamton New York USA

3. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Ministry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University Wuhan China

4. KAUST Catalysis Center Physical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal Saudi Arabia

Abstract

AbstractProton exchange‐membrane fuel cell (PEMFC) is a clean and efficient type of energy storage device. However, the sluggish reaction rate of the cathode oxygen reduction reaction (ORR) has been a significant problem in its development. This review reports the recent progress of advanced electrocatalysts focusing on the interface/surface electronic structure and exploring the synergistic relationship of precious‐based and non‐precious metal‐based catalysts and support materials. The support materials contain non‐metal (C/N/Si, etc.) and metal‐based structures, which have demonstrated a crucial role in the synergistic enhancement of electrocatalytic properties, especially for high‐temperature fuel cell systems. To improve the strong interaction, some exciting synergistic strategies by doping and coating heterogeneous elements or connecting polymeric ligands containing carbon and nitrogen were also shown herein. Besides the typical role of the crystal surface, phase structure, lattice strain, etc., the evolution of structure‐performance relations was also highlighted in real‐time tests. The advanced in situ characterization techniques were also reviewed to emphasize the accurate structure‐performance relations. Finally, the challenge and prospect for developing the ORR electrocatalysts were concluded for commercial applications in low‐ and high‐temperature fuel cell systems.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

National Science Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3