Analysis of Throughput and Delay for an Underwater Multi-DATA Train Protocol with Multi-RTS Reception and Block ACK

Author:

Hwang Ho YoungORCID

Abstract

We propose an underwater multi-DATA train protocol with multi-RTS reception and block ACK (BACK) for underwater acoustic sensor networks. Due to long underwater acoustic propagation delay, some RTS frames may not overlap at a sink node, even if the RTS frames were sent to the sink node simultaneously by different sensor nodes. We consider that our underwater sink node can recover these nonoverlapping RTS frames. Since our RTS frame contains ID of the RTS sending node and a timestamp, the sink node calculates the propagation delay between the RTS sending node and the sink node, then broadcasts a CTS frame. Since our CTS frame contains when each RTS sending node can transmit a DATA frame to the sink node, multiple DATA frames transmitted by different sensor nodes can be formed as a train at the sink node. We also propose an underwater BACK protocol which is analogous to our proposed underwater multi-DATA train protocol. We analyze normalized throughput and mean access delay of our proposed protocols and the conventional protocols. The analytical and simulation results show that our analysis is accurate and our proposed protocols outperform the conventional protocols. Our proposed protocol can shorten the delay and increase the throughput via the multi-DATA train, multi-RTS reception, and BACK.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3