Affiliation:
1. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China
2. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
Abstract
Surface defect detection of strip steel is an important guarantee for improving the production quality of strip steel. However, due to the diverse types, scales, and texture structures of surface defects on strip steel, as well as the irregular distribution of defects, it is difficult to achieve rapid and accurate detection of strip steel surface defects with existing methods. This article proposes a real-time and high-precision surface defect detection algorithm for strip steel based on YOLOv7. Firstly, Partial Conv is used to replace the conventional convolution blocks of the backbone network to reduce the size of the network model and improve the speed of detection; Secondly, The CA attention mechanism module is added to the ELAN module to enhance the ability of the network to extract detect features and improve the effectiveness of detect detection in complex environments; Finally, The SPD convolution module is introduced at the output end to improve the detection performance of small targets with surface defects on steel. The experimental results on the NEU-DET dataset indicate that the mean average accuracy (mAP@IoU = 0.5) is 80.4%, which is 4.0% higher than the baseline network. The number of parameters is reduced by 8.9%, and the computational load is reduced by 21.9% (GFLOPs). The detection speed reaches 90.9 FPS, which can well meet the requirements of real-time detection.
Funder
Outstanding Young Scientists in Beijing
Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems
Key Scientific and Technological Project of Henan Province
Sub project of strengthening key basic research projects in the basic plan of the science and Technology Commission of the Military Commission
Doctoral Funded Programs Supported by Henan Polytechnic University
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献