A New Global Total Electron Content Empirical Model

Author:

Feng Jiandi,Han Baomin,Zhao ZhenzhenORCID,Wang Zhengtao

Abstract

Research on total electron content (TEC) empirical models is one of the important topics in the field of space weather services. Global TEC empirical models based on Global Ionospheric Maps (GIMs) TEC data released by the International GNSS Service (IGS) have developed rapidly in recent years. However, the accuracy of such global empirical models has a crucial restriction arising from the non-uniform accuracy of IGS TEC data in the global scope. Specifically, IGS TEC data accuracy is higher on land and lower over the ocean due to the lack of stations in the latter. Using uneven precision GIMs TEC data as a whole for model fitting is unreasonable. Aiming at the limitation of global ionospheric TEC modelling, this paper proposes a new global ionospheric TEC empirical model named the TECM-GRID model. The model consists of 5183 sections, corresponding to 5183 grid points (longitude 5°, latitude 2.5°) of GIM. Two kinds of single point empirical TEC models, SSM-T1 and SSM-T2, are used for TECM-GRID. According to the locations of grid points, the SSM-T2 model is selected as the sub-model in the Mid-Latitude Summer Night Anomaly (MSNA) region, and SSM-T1 is selected as the sub-model in other regions. The fitting ability of the TECM-GRID model for modelling data was tested in accordance with root mean square (RMS) and relative RMS values. Then, the TECM-GRID model was validated and compared with the NTCM-GL model and Center for Orbit Determination in Europe (CODE) GIMs at time points other than modelling time. Results show that TECM-GRID can effectively describe the Equatorial Ionization Anomaly (EIA) and the MSNA phenomena of the ionosphere, which puts it in good agreement with CODE GIMs and means that it has better prediction ability than the NTCM-GL model.

Funder

National Natural Science Foundation of China

the Key Laboratory of Geospace Environment and Geodesy, the Ministry of Education, Wuhan University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference51 articles.

1. Evaluation of COMPASS ionospheric model in GNSS positioning

2. Evaluation on the precision of Klobuchar model for BeiDou navigation satellite system;Zhang;Geomat. Inf. Sci. Wuhan Univ.,2014

3. A new version of the NeQuick ionosphere electron density model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3