A Model-Assisted Combined Machine Learning Method for Ionospheric TEC Prediction

Author:

Weng Jiaxuan1,Liu Yiran1,Wang Jian123ORCID

Affiliation:

1. School of Microelectronics, Tianjin University, Tianjin 300072, China

2. Qingdao Key Laboratory of Marine Information Perception and Transmission, Qingdao Institute for Ocean Technology, Tianjin University, Qingdao 266200, China

3. Shandong Engineering Technology Research Center of Ocean Information Awareness and Transmission, Qingdao 266200, China

Abstract

In order to improve the prediction accuracy of ionospheric total electron content (TEC), a combined intelligent prediction model (MMAdapGA-BP-NN) based on a multi-mutation, multi-cross adaptive genetic algorithm (MMAdapGA) and a back propagation neural network (BP-NN) was proposed. The model combines the international reference ionosphere (IRI), statistical machine learning (SML), BP-NN, and MMAdapGA. Compared with the IRI, SML-based, and other neural network models, MMAdapGA-BP-NN has higher accuracy and a more stable prediction effect. Taking the Athens station in Greece as an example, the root mean square errors (RMSEs) of MMAdapGA-BP-NN in 2015 and 2020 are 2.84TECU and 0.85TECU, respectively, 52.27% and 72.13% lower than the IRI model. Compared with the single neural network model, the MMAdapGA-BP-NN model reduced RMSE by 28.82% and 24.11% in 2015 and 2020, respectively. Furthermore, compared with the neural network optimized by a single mutation genetic algorithm, MMAdapGA-BP-NN has fewer iterations ranging from 10 to 30. The results show that the prediction effect and stability of the proposed model have obvious advantages. As a result, the model could be extended to an alternative prediction scheme for more ionospheric parameters.

Funder

State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference43 articles.

1. SuomiNet: A Real–Time National GPS Network for Atmospheric Research and Education;Ware;Bull. Am. Meteorol. Soc.,2000

2. Review and Perspectives: Understanding Natural-Hazards-Generated Ionospheric Perturbations Using GPS Measurements and Coupled Modeling: Natural-Hazards-Caused Tec Perturbations;Komjathy;Radio Sci.,2016

3. Solar Activity Effects of the Ionosphere: A Brief Review;Liu;Chin. Sci. Bull.,2011

4. A Review of Ionospheric Scintillation Models;Priyadarshi;Surv. Geophys.,2015

5. Research Progress and Prospect of GNSS Space Environment Science;Yao;Cehui Xuebao/Acta Geod. Cartogr. Sin.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3