A Prediction Model of Ionospheric Total Electron Content Based on Grid-Optimized Support Vector Regression

Author:

Yu Qiao1,Men Xiaobin1,Wang Jian123ORCID

Affiliation:

1. School of Microelectronics, Tianjin University, Tianjin 300072, China

2. Qingdao Institute for Ocean Technology, Tianjin University, Qingdao 266200, China

3. Shandong Engineering Technology Research Center of Ocean Information Awareness and Transmission, Qingdao 266200, China

Abstract

Evaluating and mitigating the adverse effects of the ionosphere on communication, navigation, and other services, as well as fully utilizing the ionosphere, have become increasingly prominent topics in the academic community. To quantify the dynamical changes and improve the prediction accuracy of the ionospheric Total Electron Content (TEC), we propose a prediction model based on grid-optimized Support Vector Regression (SVR). This modeling processes include three steps: (1) dividing the dataset for training, validation, and testing; (2) determining the hyperparameters C and g by the grid search method through cross-validation using training and validation data; and (3) testing the trained model using the test data. Taking the Gakona station as an example, we compared the proposed model with the International Reference Ionosphere (IRI) model and a TEC prediction model based on Statistical Machine Learning (SML). The performance of the models was evaluated using the metrics of mean absolute error (MAE) and root mean square error (RMSE). The specific results are as follows: the MAE of the CCIR, URSI, SML, and SVR models compared to the observations are 1.06 TECU, 1.41 TECU, 0.7 TECU, and 0.54 TECU, respectively; the RMSE are 1.36 TECU, 1.62 TECU, 0.92 TECU, and 0.68 TECU, respectively. These results indicate that the SVR model has the most minor prediction error and the highest accuracy for predicting TEC. This method also provides a new approach for predicting other ionospheric parameters.

Funder

State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information Systems

Publisher

MDPI AG

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3