Charge Conjugation Symmetry in the Finite Basis Approximation of the Dirac Equation

Author:

Salman MaenORCID,Saue TrondORCID

Abstract

Four-component relativistic atomic and molecular calculations are typically performed within the no-pair approximation where negative-energy solutions are discarded. These states are, however, needed in QED calculations, wherein, furthermore, charge conjugation symmetry, which connects electronic and positronic solutions, becomes an issue. In this work, we shall discuss the realization of charge conjugation symmetry of the Dirac equation in a central field within the finite basis approximation. Three schemes for basis set construction are considered: restricted, inverse, and dual kinetic balance. We find that charge conjugation symmetry can be realized within the restricted and inverse kinetic balance prescriptions, but only with a special form of basis functions that does not obey the right boundary conditions of the radial wavefunctions. The dual kinetic balance prescription is, on the other hand, compatible with charge conjugation symmetry without restricting the form of the radial basis functions. However, since charge conjugation relates solutions of opposite value of the quantum number κ , this requires the use of basis sets chosen according to total angular momentum j rather than orbital angular momentum ℓ. As a special case, we consider the free-particle Dirac equation, where opposite energy solutions are related by charge conjugation symmetry. We show that there is additional symmetry in that solutions of the same value of κ come in pairs of opposite energy.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3