GRASP: The Future?

Author:

Grant IanORCID,Quiney Harry

Abstract

The theoretical foundations of relativistic electronic structure theory within quantum electrodynamics (QED) and the computational basis of the atomic structure code GRASP are briefly surveyed. A class of four-component basis set is introduced, which we denote the CKG-spinor set, that enforces the charge-conjugation symmetry of the Dirac equation. This formalism has been implemented using the Gaussian function technology that is routinely used in computational quantum chemistry, including in our relativistic molecular structure code, BERTHA. We demonstrate that, unlike the kinetically matched two-component basis sets that are widely employed in relativistic quantum chemistry, the CKG-spinor basis is able to reproduce the well-known eigenvalue spectrum of point-nuclear hydrogenic systems to high accuracy for all atomic symmetry types. Calculations are reported of third- and higher-order vacuum polarization effects in hydrogenic systems using the CKG-spinor set. These results reveal that Gaussian basis set expansions are able to calculate accurately these QED effects without recourse to the apparatus of regularization and in agreement with existing methods. An approach to the evaluation of the electron self-energy is outlined that extends our earlier work using partial-wave expansions in QED. Combined with the treatment of vacuum polarization effects described in this article, these basis set methods suggest the development of a comprehensive ab initio approach to the calculation of radiative and QED effects in future versions of the GRASP code.

Publisher

MDPI AG

Subject

Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Reference44 articles.

1. Hartree, D.R. (1957). The Calculation of Atomic Structures, John Wiley & Sons, Inc.

2. Relativistic self-consistent fields;Grant;Proc. R. Soc. A,1961

3. Relativistic calculation of atomic structures;Grant;Adv. Phys.,1970

4. GRASP2018-A Fortran 95 version of the General Purpose Relativistic Atomic Structure Package;Gaigalas;Computer Phys. Commun.,2018

5. (2022, June 01). Available online: https://github.com/compas.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3