Two-Machine Job-Shop Scheduling Problem to Minimize the Makespan with Uncertain Job Durations

Author:

Sotskov Yuri N.,Matsveichuk Natalja M.,Hatsura Vadzim D.

Abstract

We study two-machine shop-scheduling problems provided that lower and upper bounds on durations of n jobs are given before scheduling. An exact value of the job duration remains unknown until completing the job. The objective is to minimize the makespan (schedule length). We address the issue of how to best execute a schedule if the job duration may take any real value from the given segment. Scheduling decisions may consist of two phases: an off-line phase and an on-line phase. Using information on the lower and upper bounds for each job duration available at the off-line phase, a scheduler can determine a minimal dominant set of schedules (DS) based on sufficient conditions for schedule domination. The DS optimally covers all possible realizations (scenarios) of the uncertain job durations in the sense that, for each possible scenario, there exists at least one schedule in the DS which is optimal. The DS enables a scheduler to quickly make an on-line scheduling decision whenever additional information on completing jobs is available. A scheduler can choose a schedule which is optimal for the most possible scenarios. We developed algorithms for testing a set of conditions for a schedule dominance. These algorithms are polynomial in the number of jobs. Their time complexity does not exceed O ( n 2 ) . Computational experiments have shown the effectiveness of the developed algorithms. If there were no more than 600 jobs, then all 1000 instances in each tested series were solved in one second at most. An instance with 10,000 jobs was solved in 0.4 s on average. The most instances from nine tested classes were optimally solved. If the maximum relative error of the job duration was not greater than 20 % , then more than 80 % of the tested instances were optimally solved. If the maximum relative error was equal to 50 % , then 45 % of the tested instances from the nine classes were optimally solved.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3