Resilience-Based Surrogate Robustness Measure and Optimization Method for Robust Job-Shop Scheduling

Author:

Xiao ShichangORCID,Wu Zigao,Dui Hongyan

Abstract

This paper addresses the robust job-shop scheduling problems (RJSSP) with stochastic deteriorating processing times by considering the resilience of the production schedule. To deal with the disturbances caused by the processing time variations, the expected deviation between the realized makespan and the initial makespan is adopted to measure the robustness of a schedule. A surrogate model for robust scheduling is proposed, which can optimize both the schedule performance and robustness of RJSSP. Specifically, the computational burden of simulation is considered a deficiency for robustness evaluation under the disturbance of stochastic processing times. Therefore, a resilience-based surrogate robustness measure (SRM-R) is provided for the robustness estimation in the surrogate model. The proposed SRM-R considers the production resilience and can utilize the available information on stochastic deteriorating processing times and slack times in the schedule structure by analyzing the disturbance propagation of the correlated operations in the schedule. Finally, a multi-objective hybrid estimation of distribution algorithm is employed to obtain the Pareto optimal solutions of RJSSP. The simulation experiment results show that the presented SRM-R is effective and can provide the Pareto solutions with a lower computational burden. Furthermore, an RJSSP case derived from the manufacturing environment demonstrates that the proposed approach can generate satisfactory robust solutions with significantly improved computational efficiency.

Funder

Soft Science Key Project of Shanghai Science and Technology Innovation Action Plan

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Shanghai University Young Teacher Training Grant Program

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3