Abstract
With the popularity of Android, malware detection and family classification have also become a research focus. Many excellent methods have been proposed by previous authors, but static and dynamic analyses inevitably require complex processes. A hybrid analysis method for detecting Android malware and classifying malware families is presented in this paper, and is partially optimized for multiple-feature data. For static analysis, we use permissions and intent as static features and use three feature selection methods to form a subset of three candidate features. Compared with various models, including k-nearest neighbors and random forest, random forest is the best, with a detection rate of 95.04%, while the chi-square test is the best feature selection method. After using feature selection to explore the critical static features contained in this dataset, we analyzed a subset of important features to gain more insight into the malware. In a dynamic analysis based on network traffic, unlike those that focus on a one-way flow of traffic and work on HTTP protocols and transport layer protocols, we focused on sessions and retained protocol layers. The Res7LSTM model is then used to further classify the malicious and partially benign samples detected in the static detection. The experimental results show that our approach can not only work with fewer static features and guarantee sufficient accuracy, but also improve the detection rate of Android malware family classification from 71.48% in previous work to 99% when cutting the traffic in terms of the sessions and protocols of all layers.
Subject
General Physics and Astronomy
Reference35 articles.
1. Ericsson Mobility Report June 2020. Ericsson Mobility Reporthttps://www.ericsson.com/49da93/assets/local/mobility-report/documents/2020/june2020-ericsson-mobility-report.pdf
2. Smartphone Market Sharehttps://www.idc.com/promo/smartphone-market-share/os
3. Internet Security Threat Report 2019https://docs.broadcom.com/doc/istr-24-executive-summary-en
4. 2019 Android Malware Special Report by 360 Security Brainhttps://blogs.360.cn/post/review_android_malware_of_2019.html
5. 2019 Mobile Ad Supply Chain Safety Reporthttp://info.pixalate.com/mobile-advertising-supply-chain-safety-report-2019
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献