Evaluation and Analysis of the Seasonal Cycle and Variability of the Trend from GOSAT Methane Retrievals

Author:

Kivimäki Ella,Lindqvist Hannakaisa,Hakkarainen Janne,Laine Marko,Sussmann Ralf,Tsuruta Aki,Detmers Rob,Deutscher Nicholas M.,Dlugokencky Edward J.,Hase Frank,Hasekamp Otto,Kivi Rigel,Morino Isamu,Notholt Justus,Pollard David F.,Roehl Coleen,Schneider Matthias,Sha Mahesh Kumar,Velazco Voltaire A.,Warneke Thorsten,Wunch Debra,Yoshida YukioORCID,Tamminen Johanna

Abstract

Methane ( CH 4 ) is a potent greenhouse gas with a large temporal variability. To increase the spatial coverage, methane observations are increasingly made from satellites that retrieve the column-averaged dry air mole fraction of methane ( XCH 4 ). To understand and quantify the spatial differences of the seasonal cycle and trend of XCH 4 in more detail, and to ultimately help reduce uncertainties in methane emissions and sinks, we evaluated and analyzed the average XCH 4 seasonal cycle and trend from three Greenhouse Gases Observing Satellite (GOSAT) retrieval algorithms: National Institute for Environmental Studies algorithm version 02.75, RemoTeC CH 4 Proxy algorithm version 2.3.8 and RemoTeC CH 4 Full Physics algorithm version 2.3.8. Evaluations were made against the Total Carbon Column Observing Network (TCCON) retrievals at 15 TCCON sites for 2009–2015, and the analysis was performed, in addition to the TCCON sites, at 31 latitude bands between latitudes 44.43 ∘ S and 53.13 ∘ N. At latitude bands, we also compared the trend of GOSAT XCH 4 retrievals to the NOAA’s Marine Boundary Layer reference data. The average seasonal cycle and the non-linear trend were, for the first time for methane, modeled with a dynamic regression method called Dynamic Linear Model that quantifies the trend and the seasonal cycle, and provides reliable uncertainties for the parameters. Our results show that, if the number of co-located soundings is sufficiently large throughout the year, the seasonal cycle and trend of the three GOSAT retrievals agree well, mostly within the uncertainty ranges, with the TCCON retrievals. Especially estimates of the maximum day of XCH 4 agree well, both between the GOSAT and TCCON retrievals, and between the three GOSAT retrievals at the latitude bands. In our analysis, we showed that there are large spatial differences in the trend and seasonal cycle of XCH 4 . These differences are linked to the regional CH 4 sources and sinks, and call for further research.

Funder

Academy of Finland

Horizon 2020 Framework Programme

Tiina and Antti Herlin Foundation

European Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3