Quantifying Canopy Tree Loss and Gap Recovery in Tropical Forests under Low-Intensity Logging Using VHR Satellite Imagery and Airborne LiDAR

Author:

Dalagnol Ricardo,Phillips Oliver L.,Gloor Emanuel,Galvão Lênio S.,Wagner Fabien H.,Locks Charton J.,Aragão Luiz E. O. C.ORCID

Abstract

Logging, including selective and illegal activities, is widespread, affecting the carbon cycle and the biodiversity of tropical forests. However, automated approaches using very high resolution (VHR) satellite data (≤ 1 m spatial resolution) to accurately track these small-scale human disturbances over large and remote areas are not readily available. The main constraint for performing this type of analysis is the lack of spatially accurate tree-scale validation data. In this study, we assessed the potential of VHR satellite imagery to detect canopy tree loss related to selective logging in closed-canopy tropical forests. To do this, we compared the tree loss detection capability of WorldView-2 and GeoEye-1 satellites with airborne LiDAR, which acquired pre- and post-logging data at the Jamari National Forest in the Brazilian Amazon. We found that logging drove changes in canopy height ranging from −5.6 to −42.2 m, with a mean reduction of −23.5 m. A simple LiDAR height difference threshold of −10 m was enough to map 97% of the logged trees. Compared to LiDAR, tree losses can be detected using VHR satellite imagery and a random forest (RF) model with an average precision of 64%, while mapping 60% of the total tree loss. Tree losses associated with large gap openings or tall trees were more successfully detected. In general, the most important remote sensing metrics for the RF model were standard deviation statistics, especially those extracted from the reflectance of the visible bands (R, G, B), and the shadow fraction. While most small canopy gaps closed within ~2 years, larger gaps could still be observed over a longer time. Nevertheless, the use of annual imagery is advised to reach acceptable detectability. Our study shows that VHR satellite imagery has the potential for monitoring the logging in tropical forests and detecting hotspots of natural disturbance with a low cost at the regional scale.

Funder

Natural Environment Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference48 articles.

1. The Economics of Illegal Logging and Associated Trade;Contreras-Hermosilla;Round Table Sustain. Dev.,2007

2. Illegal Logging and Related Trade: Indicators of the Global Response;Lawson,2010

3. Selective Logging in the Brazilian Amazon

4. Environmental change and the carbon balance of Amazonian forests

5. Fire science for rainforests

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3