An IoT-Based Framework for Personalized Health Assessment and Recommendations Using Machine Learning

Author:

Jagatheesaperumal Senthil Kumar1ORCID,Rajkumar Snegha1,Suresh Joshinika Venkatesh1,Gumaei Abdu H.2ORCID,Alhakbani Noura3,Uddin Md. Zia4ORCID,Hassan Mohammad Mehedi5ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, India

2. Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

3. Department of Information Technology, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

4. Software and Service Innovation, SINTEF Digital, 0373 Oslo, Norway

5. Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Abstract

To promote a healthy lifestyle, it is essential for individuals to maintain a well-balanced diet and engage in customized workouts tailored to their specific body conditions and health concerns. In this study, we present a framework that assesses an individual’s existing health conditions, enabling people to evaluate their well-being conveniently without the need for a doctor’s consultation. The framework includes a kit that measures various health indicators, such as body temperature, pulse rate, blood oxygen level, and body mass index (BMI), requiring minimal effort from nurses. To analyze the health parameters, we collected data from a diverse group of individuals aged 17–24, including both men and women. The dataset consists of pulse rate (BPM), blood oxygen level (SpO2), BMI, and body temperature, obtained through an integrated Internet of Things (IoT) unit. Prior to analysis, the data was augmented and balanced using machine learning algorithms. Our framework employs a two-stage classifier system to recommend a balanced diet and exercise based on the analyzed data. In this work, machine learning models are utilized to analyze specifically designed datasets for adult healthcare frameworks. Various techniques, including Random Forest, CatBoost classifier, Logistic Regression, and MLP classifier, are employed for this analysis. The algorithm demonstrates its highest accuracy when the training and testing datasets are divided in a 70:30 ratio, resulting in an average accuracy rate of approximately 99% for the mentioned algorithms. Through experimental analysis, we discovered that the CatBoost algorithm outperforms other approaches in terms of achieving maximum prediction accuracy. Additionally, we have developed an interactive web platform that facilitates easy interaction with the implemented framework, enhancing the user experience and accessibility.

Funder

King Saud University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3