FL-PMI: Federated Learning-Based Person Movement Identification through Wearable Devices in Smart Healthcare Systems

Author:

Arikumar K. S.ORCID,Prathiba Sahaya Beni,Alazab MamounORCID,Gadekallu Thippa ReddyORCID,Pandya SharnilORCID,Khan Javed Masood,Moorthy Rajalakshmi Shenbaga

Abstract

Recent technological developments, such as the Internet of Things (IoT), artificial intelligence, edge, and cloud computing, have paved the way in transforming traditional healthcare systems into smart healthcare (SHC) systems. SHC escalates healthcare management with increased efficiency, convenience, and personalization, via use of wearable devices and connectivity, to access information with rapid responses. Wearable devices are equipped with multiple sensors to identify a person’s movements. The unlabeled data acquired from these sensors are directly trained in the cloud servers, which require vast memory and high computational costs. To overcome this limitation in SHC, we propose a federated learning-based person movement identification (FL-PMI). The deep reinforcement learning (DRL) framework is leveraged in FL-PMI for auto-labeling the unlabeled data. The data are then trained using federated learning (FL), in which the edge servers allow the parameters alone to pass on the cloud, rather than passing vast amounts of sensor data. Finally, the bidirectional long short-term memory (BiLSTM) in FL-PMI classifies the data for various processes associated with the SHC. The simulation results proved the efficiency of FL-PMI, with 99.67% accuracy scores, minimized memory usage and computational costs, and reduced transmission data by 36.73%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference44 articles.

1. IoT-Based Applications in Healthcare Devices

2. FIoT: A QoS-Aware Fog-IoT Framework to Minimize Latency in IoT Applications via Fog Offloading;Arikumar,2021

3. Sensing and sensor fundamentals;McGrath,2013

4. EELTM: An Energy Efficient LifeTime Maximization Approach for WSN by PSO and Fuzzy-Based Unequal Clustering

5. A Review on Human Activity Recognition Using Vision-Based Method

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3