Spatiotemporal Evaluation of the Flood Potential Index and Its Driving Factors across the Volga River Basin Based on Combined Satellite Gravity Observations

Author:

Zou Zhengbo12,Li Yu3,Cui Lilu3ORCID,Yao Chaolong4,Xu Chuang5ORCID,Yin Maoqiao3,Zhu Chengkang3

Affiliation:

1. Key Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration, Wuhan 430071, China

2. Gravitation and Earth Tide, National Observation and Research Station, Wuhan 430071, China

3. School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China

4. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

5. Department of Surveying Engineering, School of Civil and Transportation, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Floods have always threatened the survival and development of human beings. To reduce the adverse effects of floods, it is very important to understand the influencing factors of floods and their formation mechanisms. In our study, we integrated the Gravity Recovery and Climate Experiment and its Follow-On and Swarm solutions to estimate an uninterrupted 19-year flood potential index (FPI) time series, discussed the spatiotemporal distribution characteristics of the FPI and monitored major floods in the Volga River basin (VRB) from 2003 to 2021. Finally, we analyzed the relationship between the FPI and hydrometeorological factors to comprehend the flood formation mechanism. The results show that data fusion has reduced the uncertainty of terrestrial water storage change (TWSC), and the TWSC from the combined satellite gravity observations has a good consistency with that from the Global Land Data Assimilation System model (correlation coefficient = 0.92). During the study period, two major floods (June 2005 and May 2018) occurred in the VRB. The FPI has a significant seasonal change characteristic, and shows a high flood risk in spring and a low one in autumn. With regards to spatial distribution, the flood risk is increasing in the north (increasing rate = 0.1) and decreasing in the south (decreasing rate = 0.39). Snow water equivalent (SWE, correlation coefficient = 0.75) has a stronger correlation with the FPI than precipitation (PPT, correlation coefficient = 0.46), which is attributed to the recharge of SWE on water resources greater than that of PPT. The rising surface temperature (ST) speeds up snow melt, resulting in excessive groundwater and soil moisture, and the flood risk greatly increases at this time. The process lasts about three months. Therefore, except for PPT, ST is also a climatic factor leading to the floods in the VRB. Our study provides a reference for flood research in high-latitude regions.

Funder

Open Fund of Wuhan, Gravitation and Solid Earth Tides, National Observation and Research Station

National Natural Science Foundation of China

Science for Earthquake Resilience

Max Planck Society and the Chinese Academy of Sciences within the LEGACY

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference70 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3