Estimation of Tropical Cyclone Intensity via Deep Learning Techniques from Satellite Cloud Images

Author:

Tong Biao1,Fu Jiyang1,Deng Yaxue1,Huang Yongjun2,Chan Pakwai3ORCID,He Yuncheng1ORCID

Affiliation:

1. Research Center for Wind Engineering and Engineering Vibration, Guangzhou University, Guangzhou 510006, China

2. School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China

3. Hong Kong Observatory, Hong Kong 999077, China

Abstract

Estimating the intensity of tropical cyclones (TCs) is usually involved as a critical step in studies on TC disaster warnings and prediction. Satellite cloud images (SCIs) are one of the most effective and preferable data sources for TC research. Despite the great achievements in various SCI-based studies, accurate and efficient estimation of TC intensity still remains a challenge. In recent years, machine learning (ML) techniques have gained fast development and shown significant potential in dealing with big data, particularly with images. This study focuses on the objective estimation of TC intensity based on SCIs via a comprehensive usage of some advanced deep learning (DL) techniques and smoothing methods. Two estimation strategies are proposed and examined which, respectively, involve one and two functional stages. The one-stage strategy uses Vision Transformer (ViT) or Deep Convolutional Neutral Network (DCNN) as the regression model for directly identifying TC intensity, while the second strategy involves a classification stage that aims to stratify SCI samples into a few intensity groups and a subsequent regression stage that specifies the TC intensity. Further efforts are made to improve the estimation accuracy by using smoothing manipulations (via four specific smoothing techniques) in the scenarios of the aforementioned two strategies and their fusion. Results show that DCNN performs better than ViT in the one-stage strategy, while using ViT as the classification model and DCNN as the regression model can result in the best performance in the two-stage strategy. It is interesting that although the strategy of singly using DCNN wins out over any concerned two-stage strategy, the fusion of the two strategies outperforms either the one-stage strategy or the two-stage strategy. Results also suggest that using smoothing techniques are beneficial for the improvement of estimation accuracy. Overall, the best performance is achieved by using a hybrid strategy that consists of the one-stage strategy, the two-stage strategy and smoothing manipulation. The associated RMSE and MAE values are 9.81 kt and 7.51 kt, which prevail over those from most existing studies.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province for Distinguished Young Scholars

Guangzhou Municipal Science and Technology Project

Ministry of Education, China-111 Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3