A Geospatial Analysis-Based Method for Railway Route Selection in Marine Glaciers: A Case Study of the Sichuan-Tibet Railway Network

Author:

Deng Tao1ORCID,Sharafat Abubakar2ORCID,Wie Young Min3ORCID,Lee Ki Gang3ORCID,Lee Euiong4,Lee Kang Hoon5

Affiliation:

1. Department of Civil & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea

2. School of Architectural, Civil, Environment and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

3. Department of Materials Engineering, Kyonggi University, Suwon 16227, Republic of Korea

4. Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si 38453, Republic of Korea

5. Department of Energy and Environmental Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Republic of Korea

Abstract

Marine glaciers play a significant role in shaping landforms due to their erosive nature coupled with their surrounding environment. During this process, they pose a natural hazard threat to man-made infrastructure. The dynamic nature of these glaciers poses a particular threat, especially to railway infrastructure constructed in remote areas with glacial activity. Substantial research has been undertaken on the role of threats posed by marine glaciers to railway infrastructure. However, a detailed study of favorable glacier landforms prior to railway construction has yet to be explored. In this study, we propose a geospatial analysis-based method to determine the favorable most landforms shaped by marine glaciers for railway network route selection. This study provides a novel approach by first analyzing the availability of four major favorable landforms shaped by marine glaciers (glacier canyons, valley shoulders, moraine terraces, and ancient dammed lake basins), then proposes a railway route selection method for marine glacier distribution areas involving three steps. First, it is necessary to understand the basic situation of regional glaciers; then, to determine a feasible location for the railway based on judgment of the direct and indirect action areas of glaciers; and finally, through a thematic study of glacial geomorphology, to devise corresponding strategies for using glacial landforms to optimize the railway route. In order to verify the feasibility of the proposed method, it was implemented in the Palong Zangbo watershed of the Sichuan–Tibet railway network. Utilizing the power function method, the glacier basin areas of 22 glacier canyons along the Sichuan–Tibet railway line were identified and the maximum annual average velocity of 75 glaciers over the past ten years was calculated by offset tracking technology. The results indicate that the proposed optimization strategies utilizing glacier canyons for a short and straight route scheme and leveraging moraine terraces for a high-line scheme can provide comprehensive guidance for railway route selection in marine glacial areas.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3