The Coupling Mechanism between Railway Alignment Design and Resource Environment in the Southwestern Mountainous Areas of China

Author:

Wan Bingtong1,Bao Xueying1,Li Aichun1

Affiliation:

1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

Faced with the characteristics of multifactor coupling and interweaving along the railway lines in the southwestern mountainous areas of China, researching the coupling mechanism and optimizing the collaborative development path between alignment designs and the resource environment is conducive to promoting the green and sustainable development of railways in these southwestern mountainous areas. In this study, first, regarding the environmental characteristics of engineering along the railway lines in the southwestern mountainous area, the key elements of the interaction and coercion between the alignment design (internal system) and the resource environment (external system) are identified, and the interactive impact mechanism of the “alignment design–resource environment” complex is revealed. Accordingly, a nonlinear coupling mechanism between the alignment design system and the resource environment system is established using the deviation coefficient coupling degree model. Second, from a methodological perspective, following a technical path of “analyzing the coercive effects of internal and external factors–identifying coupling relationships–discovering coupling laws–screening driving factors–proposing optimization plans–achieving collaborative development goals”, we propose an overall optimization plan to solve the problem. Finally, the Chengdu Changdu section of the X railway, which is located in a southwestern mountainous area, is taken as an example for this study. The results indicate that if the state of the external system of the KL scheme is continuously improved through the regulation of the u22 (crossing the ecological protection red line length), u23 (biodiversity impact), and u24 (ecosystem impact) indicators and that the internal structure of the line design is improved by optimizing the l12 (total length of bridges and tunnels) and l13 (number of stations) indicators, effectively driving the improvement in the u31 (land resource occupation) and u43 (land development intensity) indicators, the alignment design and resource environment will exhibit a mutually reinforcing coupling evolution trend and ultimately achieve an “alignment design–resource environment” composite system with higher quality coupling.

Funder

National Natural Science Foundation of China

Basic Research Project of the Science and Technology Research and Development Program Laboratory of China National Railway Group Co., Ltd.

central guides local funds for science and technology development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3