Quantitative Characterization of Coastal Cliff Retreat and Landslide Processes at Portonovo–Trave Cliffs (Conero, Ancona, Italy) Using Multi-Source Remote Sensing Data

Author:

Fullin Nicola1ORCID,Duo Enrico1ORCID,Fabbri Stefano12ORCID,Francioni Mirko3ORCID,Ghirotti Monica1ORCID,Ciavola Paolo1ORCID

Affiliation:

1. Department of Physics and Earth Sciences, University of Ferrara, 44122 Ferrara, Italy

2. Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy

3. Department of Pure and Applied Sciences, University of Urbino, 61029 Urbino, Italy

Abstract

The integration of multiple data sources, including satellite imagery, aerial photography, and ground-based measurements, represents an important development in the study of landslide processes. The combination of different data sources can be very important in improving our understanding of geological phenomena, especially in cases of inaccessible areas. In this context, the study of coastal areas represents a real challenge for the research community, both for the inaccessibility of coastal slopes and for the numerous drivers that can control coastal processes (subaerial, marine, or endogenic). In this work, we present a case study of the Conero Regional Park (Northern Adriatic Sea, Ancona, Italy) cliff-top retreat, characterized by Neogenic soft rocks (flysch, molasse). In particular, the study is focused in the area between the beach of Portonovo and Trave (south of Ancona), which has been studied using aerial orthophoto acquired between 1978 and 2021, Unmanned Aerial Vehicle (UAV) photographs (and extracted photogrammetric model) surveyed in September 2021 and 2012 LiDAR data. Aerial orthophotos were analyzed through the United States Geological Survey’s (USGS) tool Digital Shoreline Analysis System (DSAS) to identify and estimate the top-cliff erosion. The results were supported by the analysis of wave data and rainfall from the correspondent period. It has been found that for the northernmost sector (Trave), in the examined period of 40 years, an erosion up to 40 m occurred. Furthermore, a Digital Elevation Model (DEM) of Difference (DoD) between a 2012 Digital Terrain Model (DTM) and a UAV Digital Surface Model (DSM) was implemented to corroborate the DSAS results, revealing a good agreement between the retreat areas, identified by DSAS, and the section of coast characterized by a high value of DoD.

Funder

University of Ferrara

ISMAR-CNR

CORILA

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference94 articles.

1. Shwartz, M.L. (2018). Encyclopedia of Coastal Science, Springer.

2. Rocky Coast Processes: With Special Reference to the Recession of Soft Rock Cliffs;Sunamura;Proc. Japan Acad. Ser. B Phys. Biol. Sci.,2015

3. Tsuguo, S. (1992). Geomorphology of Rocky Coasts, J. Wiley.

4. Trenhaile, A.S. (2012). Cliffs and Rock Coasts, Elsevier Inc.

5. Rock Coast Geomorphology: Recent Advances and Future Research Directions;Naylor;Geomorphology,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3