An Efficient Detection Framework for Aerial Imagery Based on Uniform Slicing Window

Author:

Yang Xin12ORCID,Song Yong12ORCID,Zhou Ya12ORCID,Liao Yizhao12ORCID,Yang Jinqi12ORCID,Huang Jinxiang12ORCID,Huang Yiqian12ORCID,Bai Yashuo12ORCID

Affiliation:

1. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China

2. Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing Institute of Technology, Beijing 100081, China

Abstract

Drone object detection faces numerous challenges such as dense clusters with overlapping, scale diversity, and long-tail distributions. Utilizing tiling inference through uniform sliding window is an effective way of enlarging tiny objects and meanwhile efficient for real-world applications. However, merely partitioning input images may result in heavy truncation and an unexpected performance drop in large objects. Therefore, in this work, we strive to develop an improved tiling detection framework with both competitive performance and high efficiency. First, we formulate the tiling inference and training pipeline with a mixed data strategy. To avoid truncation and handle objects at all scales, we simultaneously perform global detection on the original image and local detection on corresponding sub-patches, employing appropriate patch settings. Correspondingly, the training data includes both original images and the patches generated by random online anchor-cropping, which can ensure the effectiveness of patches and enrich the image scenarios. Furthermore, a scale filtering mechanism is applied to assign objects at diverse scales to global and local detection tasks to keep the scale invariance of a detector and obtain optimal fused predictions. As most of the additional operations are performed in parallel, the tiling inference remains highly efficient. Additionally, we devise two augmentations customized for tiling detection to effectively increase valid annotations, which can generate more challenging drone scenarios and simulate the practical cluster with overlapping, especially for rare categories. Comprehensive experiments on both public drone benchmarks and our customized real-world images demonstrate that, in comparison to other drone detection frameworks, the proposed tiling framework can significantly improve the performance of general detectors in drone scenarios with lower additional computational costs.

Funder

National Natural Science Foundation of China General Program

National Natural Science Foundation of China Key Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RDR-KD: A Knowledge Distillation Detection Framework for Drone Scenes;IEEE Geoscience and Remote Sensing Letters;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3