Author:
Kong Fanrong,Jiang Jianhui,Huang Yan
Abstract
As a powerful tool in optimization, particle swarm optimizers have been widely applied to many different optimization areas and drawn much attention. However, for large-scale optimization problems, the algorithms exhibit poor ability to pursue satisfactory results due to the lack of ability in diversity maintenance. In this paper, an adaptive multi-swarm particle swarm optimizer is proposed, which adaptively divides a swarm into several sub-swarms and a competition mechanism is employed to select exemplars. In this way, on the one hand, the diversity of exemplars increases, which helps the swarm preserve the exploitation ability. On the other hand, the number of sub-swarms adaptively changes from a large value to a small value, which helps the algorithm make a suitable balance between exploitation and exploration. By employing several peer algorithms, we conducted comparisons to validate the proposed algorithm on a large-scale optimization benchmark suite of CEC 2013. The experiments results demonstrate the proposed algorithm is effective and competitive to address large-scale optimization problems.
Funder
National Key Research and Development Program of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献