Optimal node placement of industrial wireless sensor networks based on adaptive mutation probability binary particle swarm optimization algorithm

Author:

Wang Ling1,Ye Wei2,Wang Haikuan2,Fu Xiping2,Fei Minrui2,Menhas Ilyas2

Affiliation:

1. Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China + Center for Applied Optimization, Department of Industrial and Systems Engineering, University of Flor

2. Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China

Abstract

Industrial Wireless Sensor Networks (IWSNs), a novel technique in industry control, can greatly reduce the cost of measurement and control and improve productive efficiency. Different from Wireless Sensor Networks (WSNs) in non-industrial applications, the communication reliability of IWSNs has to be guaranteed as the real-time field data need to be transmitted to the control system through IWSNs. Obviously, the network architecture has a significant influence on the performance of IWSNs, and therefore this paper investigates the optimal node placement problem of IWSNs to ensure the network reliability and reduce the cost. To solve this problem, a node placement model of IWSNs is developed and formulized in which the reliability, the setup cost, the maintenance cost and the scalability of the system are taken into account. Then an improved adaptive mutation probability binary particle swarm optimization algorithm (AMPBPSO) is proposed for searching out the best placement scheme. After the verification of the model and optimization algorithm on the benchmark problem, the presented AMPBPSO and the optimization model are used to solve various large-scale optimal sensor placement problems. The experimental results show that AMPBPSO is effective to tackle IWSNs node placement problems and outperforms discrete binary Particle Swarm Optimization (DBPSO) and standard Genetic Algorithm (GA) in terms of search accuracy and the convergence speed with the guaranteed network reliability.

Publisher

National Library of Serbia

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3