Analysis and Suppression of High-Frequency Resonance for Offshore Wind Power Grid-Connected Converter Considering Cable Capacitance Effect

Author:

Dai Linwang1,Wang Han2ORCID,Qin Yao2,Shi Gang2,Zhang Jianwen2ORCID,Cai Xu2

Affiliation:

1. State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems, China Electric Power Research Institute, Beijing 100192, China

2. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Large-scale offshore wind farms have become the development trend in wind power generation. Long submarine cables are used to collect electrical energy in the collection networks of offshore wind farms. However, the distributed capacitance of cables cannot be ignored, which makes the impedance of the collection network complex and changeable. It is common to encounter high-frequency harmonic resonance (HFHR) problems when cables interact with wind turbine generators (WTGs). The HFHR may threaten the safe and stable operation of wind turbines. In order to solve this problem, firstly, the impedance of a collection network was constructed. Furthermore, the wind farm collection network was divided into the equivalent wind turbine subsystem (EWTS) and the remaining equivalent wind farm subsystem (REWFS). Then, the mechanism of HFHR was revealed based on the impedance stability analysis method. The effects of cable parameters, the number of connected WTG, and the grid impedance on the HFHR of the interconnected system were also analyzed. Finally, the hybrid damping control method, combining active damping control (ADC) and passive damping control (PDC), was proposed to suppress the resonance. A simulation and experiment were performed to verify the effectiveness of the analysis results and proposed control method.

Funder

Open Fund of State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3