Investigation of the Feasibility of the Dynamic Equivalent Model of Large Photovoltaic Power Plants in a Harmonic Resonance Study

Author:

Xie Yuzhe1,He Yanhua1,Zhou Xuntian2,Zhang Zhigang2

Affiliation:

1. State Grid Ningbo Power Supply Company, Ningbo 315000, China

2. Ningbo Electric Power Design Institute Co., Ltd., Ningbo 315020, China

Abstract

In recent years, there have been several harmonic resonance accidents around the world that involve renewable energy power plants. The frequency scanning method is the most widely used technique in engineering practice to evaluate the severity of resonance due to its simple operation and clear physical meaning. However, when establishing electromagnetic transient simulation models and conducting frequency scans, a single generation unit or a few renewable generation units are usually used to represent the original power plant for the purpose of reducing model complexity and improving the simulation efficiency. Such a practice has been found to be effective in dynamic studies around the fundamental frequency. However, its feasibility in harmonic resonance studies has not yet been fully investigated. Because of this research gap, a feasibility study is conducted in this paper by using a real-life photovoltaic power plant. The detailed harmonic model of the plant is first established using the harmonic linearization method, and the equivalent harmonic model is then developed using the power loss conservation method. The feasibility of the equivalent model was investigated in detail, and the impact of the different impedance models on the resonance analysis was analyzed. The results indicate that the conventional dynamic equivalent model can effectively reflect the harmonic resonance characteristics of photovoltaic power plants. Furthermore, a more simplified model that ignores the inductance of the collector line is recommended in this paper to further reduce the modeling complexity.

Funder

Ningbo Yngyao Power Investment Group Company Limited

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3