A LiDAR–Inertial SLAM Method Based on Virtual Inertial Navigation System

Author:

Cai Yunpiao1ORCID,Qian Weixing1,Dong Jiayi1,Zhao Jiaqi1,Wang Kerui1,Shen Tianxiao1

Affiliation:

1. School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China

Abstract

In scenarios with insufficient structural features, LiDAR-based SLAM may suffer from degeneracy, resulting in impaired robot localization and mapping and potentially leading to subsequent deviant navigation tasks. Therefore, it is crucial to develop advanced algorithms and techniques to mitigate the degeneracy issue and ensure the robustness and accuracy of LiDAR-based SLAM. This paper presents a LiDAR–inertial simultaneous localization and mapping (SLAM) method based on a virtual inertial navigation system (VINS) to address the issue of degeneracy. We classified different gaits and match each gait to its corresponding torso inertial measurement unit (IMU) sensor to construct virtual foot inertial navigation components. By combining an inertial navigation system (INS) with zero-velocity updates (ZUPTs), we formed the VINS to achieve real-time estimation and correction. Finally, the corrected pose estimation was input to the IMU odometry calculation procedure to further refine the localization and mapping results. To evaluate the effectiveness of our proposed VINS method in degenerate environments, we conducted experiments in three typical scenarios. The results demonstrate the high suitability and accuracy of the proposed method in degenerate scenes and show an improvement in the point clouds mapping effect. The algorithm’s versatility is emphasized by its wide applicability on GPU platforms, including quadruped robots and human wearable devices. This broader potential range of applications extends to other related fields such as autonomous driving.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3