Affiliation:
1. School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
2. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Abstract
Dynamic economic dispatch (DED) plays an important role in the operation and control of power systems. The integration of DED with space and time makes it a complex and challenging problem in optimal decision making. By connecting plug-in electric vehicles (PEVs) to the grid (V2G), the fluctuations in the grid can be mitigated, and the benefits of balancing peaks and filling valleys can be realized. However, the complexity of DED has increased with the emergence of the penetration of plug-in electric vehicles. This paper proposes a model that takes into account the day-ahead, hourly-based scheduling of power systems and the impact of PEVs. To solve the model, an improved chaos moth flame optimization algorithm (CMFO) is introduced. This algorithm has a faster convergence rate and better global optimization capabilities due to the incorporation of chaotic mapping. The feasibility of the proposed CMFO is validated through numerical experiments on benchmark functions and various generation units of different sizes. The results demonstrate the superiority of CMFO compared with other commonly used swarm intelligence algorithms.
Funder
National Natural Science Foundation of China
National Key Research and Development Project of China
Scientific and Technological Project of Henan Province
Higher Learning Key Development Project of Henan Province
Natural Science Foundation of Guangdong Province
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献