Theoretical DFT Investigation of Structure and Electronic Properties of η5-Cyclopentadienyl Half-Sandwich Organochalcogenide Complexes

Author:

Oyeniyi G. T.1ORCID,Melchakova Iu. A.2,Polyutov S. P.3ORCID,Avramov P. V.1ORCID

Affiliation:

1. Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea

2. School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia

3. International Research Center of Spectroscopy and Quantum Chemistry (IRC SQC), Siberian Federal University, Svobodniy pr. 79/10, 600041 Krasnoyarsk, Russia

Abstract

For the first time, an extensive theoretical comparative study of the electronic structure and spectra of the η5-cyclopentadienyl half-sandwich [(Cp)(EPh3)], E = Se, Te) organochalcogenides was carried out using direct space electronic structure calculations within hybrid, meta, and meta-hybrid DFT GGA functionals coupled with double-ζ polarized 6-31G* and correlation-consistent triple-zeta cc-pVTZ-pp basis sets. The absence of covalent bonding between the cyclopentadienyl (Cp) ligands and Te/Se coordination centers was revealed. It was found that the chalcogens are partially positively charged and Cp ligands are partially negatively charged, which directly indicates a visible ionic contribution to Te/Se-Cp chemical bonding. Simulated UV–Vis absorption spectra show that all complexes have a UV-active nature, with a considerable shift in their visible light absorption due to the addition of methyl groups. The highest occupied molecular orbitals exhibit π-bonding between the Te/Se centers and Cp rings, although the majority of the orbital density is localized inside the Cp π-system. The presence of the chalcogen atoms and the extension of π-bonds across the chalcogen-ligand interface make the species promising for advanced photovoltaic and light-emitting applications.

Funder

National Research Foundation of the Republic of Korea

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3