Dynamic Reconfiguration Method of Photovoltaic Array Based on Improved HPSO Combined with Coefficient of Variation

Author:

Hou Shuainan1,Zhu Wu1

Affiliation:

1. College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China

Abstract

In order to address the issue of power loss resulting from partial shadow and enhance the efficiency of photovoltaic power generation, the photovoltaic array reconfiguration technology is being increasingly utilized in photovoltaic power generation systems. This paper proposes a reconfiguration method based on improved hybrid particle swarm optimization (HPSO) for the photovoltaic array of TCT (total-cross-tied) structure. The motivation behind this method is to get the best reconfiguration scheme in a simple and efficient manner. The ultimate goal is to enhance the output power of the array, save energy, and improve its overall efficiency. The improved HPSO introduces the concept of hybridization in genetic algorithms and adopts a nonlinear decreasing weight method to balance the local search and global search ability of the algorithm and prevent it from falling into the local optimal solution. The objective function used is the variation coefficient of the row current without the weight factor. This approach saves time and balances the row current of the array by altering the electrical connection of the component. In the 4 × 3 array, the improved HPSO is compared with the Zig-Zag method. In the 9 × 9 array, the improved HPSO is compared with the CS (competence square) method and the improved SuDoKu method. The simulation results show that the power enhancement percentage of the improved HPSO is between 6.39% and 28.26%, and the power curve tends to single peak characteristics. The improved HPSO has a smaller mismatch loss and a higher fill factor in the five shadow modes, which can effectively improve the output power, and it is convenient to track the maximum power point later.

Funder

State Grid Shanghai Electric Power Company Science and Technology Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference52 articles.

1. Maximum power point tracking method for photovoltaic cells under partial shading conditions;Li;Electr. Meas. Instrum.,2023

2. Technology features of the new generation power system in China;Zhou;Proc. CSEE,2018

3. Key technologies and developing challenges of power system with high proportion of renewable energy;Zhuo;Autom. Electr. Power Syst.,2021

4. Reconfiguration strategies to extract maximum power from photovoltaic array under partially shaded conditions;Malathy;Renew. Sustain. Energy Rev.,2018

5. Overview of flexible grid-connected cluster control technology for distributed photovoltaic;Shi;Electr. Meas. Instrum.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3