Affiliation:
1. College of Quality & Safety Engineering, China Jiliang University, Hangzhou 310018, China
2. China Automotive Engineering Research Institute Co., Ltd., Chongqing 401120, China
Abstract
The widespread adoption and utilization of electric vehicles has been constrained by power battery performance. We proposed a fault diagnosis method for power batteries based on multiple-model fusion. The method effectively fused the advantages of various classification models and avoided the bias of a single model towards certain fault types. Firstly, we collected and sorted parameter information of the power battery during operation. Three common neural networks: back propagation (BP) neural network, convolution neural network (CNN), and long short-term memory (LSTM) neural network, were applied to battery fault diagnosis to output the fault types. Secondly, the fusion algorithm proposed in this paper determined the accurate fault type. Based on the improved voting method, the proposed fusion algorithm, named the multi-level decision algorithm, calculated the voting factors of the diagnostic results of each classification model. According to the set decision thresholds, multi-level decision voting was conducted to avoid neglecting effective classification information from minority models, which can occur with traditional voting methods. Finally, the accuracy and effectiveness of the proposed method were verified by comparing the accuracy of each classification model with the multiple model fusion algorithm.
Funder
Out of Control Accidents’ Scenario Reconstruction and In-depth Investigation Technology for New Energy Vehicle
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献