A Fault Diagnosis Method for Power Battery Based on Multiple Model Fusion

Author:

Zhou Juan1ORCID,Wu Zonghuan1ORCID,Zhang Shun1,Wang Peng2

Affiliation:

1. College of Quality & Safety Engineering, China Jiliang University, Hangzhou 310018, China

2. China Automotive Engineering Research Institute Co., Ltd., Chongqing 401120, China

Abstract

The widespread adoption and utilization of electric vehicles has been constrained by power battery performance. We proposed a fault diagnosis method for power batteries based on multiple-model fusion. The method effectively fused the advantages of various classification models and avoided the bias of a single model towards certain fault types. Firstly, we collected and sorted parameter information of the power battery during operation. Three common neural networks: back propagation (BP) neural network, convolution neural network (CNN), and long short-term memory (LSTM) neural network, were applied to battery fault diagnosis to output the fault types. Secondly, the fusion algorithm proposed in this paper determined the accurate fault type. Based on the improved voting method, the proposed fusion algorithm, named the multi-level decision algorithm, calculated the voting factors of the diagnostic results of each classification model. According to the set decision thresholds, multi-level decision voting was conducted to avoid neglecting effective classification information from minority models, which can occur with traditional voting methods. Finally, the accuracy and effectiveness of the proposed method were verified by comparing the accuracy of each classification model with the multiple model fusion algorithm.

Funder

Out of Control Accidents’ Scenario Reconstruction and In-depth Investigation Technology for New Energy Vehicle

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3