Photographic Noise Performance Measures Based on RAW Files Analysis of Consumer Cameras

Author:

Igual JorgeORCID

Abstract

Photography is being benefited from the huge improvement in CMOS image sensors. New cameras extend the dynamic range allowing photographers to take photos with a higher quality than they could imagine one decade ago. However, the existence of different technologies make more complicated the photographic analysis of how to determine the optimal camera exposure settings. In this paper, we analyze how the different noise models are translated to different signal to noise S N R curve patterns and which factors are relevant. In particular, we discuss profoundly the relationships between exposure settings (shutter speed, aperture and ISO). Since a fair comparison between cameras can be tricky because of different pixel size, sensor format or ISO scale definition, we explain how the pixel analysis of a camera can be translated to a more helpful universal photographic noise measure based on human perception and common photography rules. We analyze the RAW files of different camera models and show how the noise performance analysis ( S N R and dynamic range) interact with photographer’s requirements.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SoDaCam: Software-defined Cameras via Single-Photon Imaging;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

2. Monitoring and Adapting the Physical State of a Camera for Autonomous Vehicles;IEEE Transactions on Intelligent Transportation Systems;2023

3. Experimental characterization of the temperature gradient inside a membrane distillation module;Energy Reports;2022-11

4. Noisy Localization of Objects in Reinforcement Learning Framework: An Experimental Case Study on a Pushing Task;2022 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC);2022-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3