A Hybrid Parallel Computing Architecture Based on CNN and Transformer for Music Genre Classification

Author:

Chen Jiyang12,Ma Xiaohong2,Li Shikuan2,Ma Sile1,Zhang Zhizheng1ORCID,Ma Xiaojing1

Affiliation:

1. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China

2. Shandong Zhengzhong Information Technology Co., Ltd., Jinan 250098, China

Abstract

Music genre classification (MGC) is the basis for the efficient organization, retrieval, and recommendation of music resources, so it has important research value. Convolutional neural networks (CNNs) have been widely used in MGC and achieved excellent results. However, CNNs cannot model global features well due to the influence of the local receptive field; these global features are crucial for classifying music signals with temporal properties. Transformers can capture long-range dependencies within an image thanks to adopting the self-attention mechanism. Nevertheless, there are still performance and computational cost gaps between Transformers and existing CNNs. In this paper, we propose a hybrid architecture (CNN-TE) based on CNN and Transformer encoder for MGC. Specifically, we convert the audio signals into mel spectrograms and feed them into a hybrid model for training. Our model employs a CNN to initially capture low-level and localized features from the spectrogram. Subsequently, these features are processed by a Transformer encoder, which models them globally to extract high-level and abstract semantic information. This refined information is then classified using a multi-layer perceptron. Our experiments demonstrate that this approach surpasses many existing CNN architectures when tested on the GTZAN and FMA datasets. Notably, it achieves these results with fewer parameters and a faster inference speed.

Funder

special funds for central guiding local science and technology development: Industrialisation of internet of things terminal safety inspection platform

Jinan science and technology programme project: demonstration application of high performance big data security storage system

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3