Abstract
Nowadays, music genre classification is becoming an interesting area and attracting lots of research attention. Multi-feature model is acknowledged as a desirable technology to realize the classification. However, the major branches of multi-feature models used in most existed works are relatively independent and not interactive, which will result in insufficient learning features for music genre classification. In view of this, we exploit the impact of learning feature interaction among different branches and layers on the final classification results in a multi-feature model. Then, a middle-level learning feature interaction method based on deep learning is proposed correspondingly. Our experimental results show that the designed method can significantly improve the accuracy of music genre classification. The best classification accuracy on the GTZAN dataset can reach 93.65%, which is superior to most current methods.
Funder
Natural Science Foundation of Jiangsu Province
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献