Tunnel FET and MOSFET Hybrid Integrated 9T SRAM with Data-Aware Write Technique for Ultra-Low Power Applications

Author:

Lu Wenjuan,Lu Yixiao,Dong Lanzhi,Peng Chunyu,Wu Xiulong,Lin Zhiting,Chen Junning

Abstract

In this paper, a Tunnel FETs (TFETs) and MOSFETs hybrid integrated 9T SRAM (HI-9T) with data-aware write technique is proposed. This structure solves the problem of excessive static power consumption caused by forward p-i-n current in the conventional 7T TFET SRAM (CV-7T), and the problem of weakened writing ability caused by the use of the TFET-stacked structure of the most advanced combined access 10T TFET SRAM (CA-10T). The simulation results demonstrate that the static power consumption of HI-9T is reduced by three orders of magnitude compared with CV-7T at a 0.6 V supply voltage and the ability to maintain data is more stable. Compared with CA-10T, the write margin (WM) of HI-9T is increased by about 2.4 times and the write latency is reduced by 54.8% at 0.5 V supply voltage. HI-9T still has good writing ability under the 0.6 V supply voltage and the CA-10T cannot write normally. Therefore, HI-9T has good overall performance and is more advantageous in ultra-low power applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference28 articles.

1. Single-Mode CMOS 6T-SRAM Macros With Keeper-Loading-Free Peripherals and Row-Separate Dynamic Body Bias Achieving 2.53fW/bit Leakage for AIoT Sensing Platforms;Zhang;Proceedings of the 2022 IEEE International Solid- State Circuits Conference (ISSCC),2022

2. An Ultra-Low-Voltage Bit-Interleaved Synthesizable 13T SRAM Circuit

3. Temperature Influence on Dielectric Tunnel FET Characterization and Subthreshold Characterization

4. Design of Low Voltage Vertical Channel Face-tunneling TFET Using Ge/SiGe Materials and Its SRAM Circuit Performance;Gupta;Proceedings of the 2020 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA),2020

5. Recent progress on negative capacitance tunnel FET for low-power applications: Device perspective

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3