Design Optimization of an Enhanced-Mode GaN HEMT with Hybrid Back Barrier and Breakdown Voltage Prediction Based on Neural Networks

Author:

Tian Kuiyuan1,Hu Jinwei1,Du Jiangfeng1ORCID,Yu Qi1

Affiliation:

1. State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

To improve the breakdown voltage (BV), a GaN-based high-electron-mobility transistor with a hybrid AlGaN back barrier (HBB-HEMT) was proposed. The hybrid AlGaN back barrier was constructed using the Al0.25Ga0.75N region and Al0.1G0.9N region, each with a distinct Al composition. Simulation results of the HBB-HEMT demonstrated a breakdown voltage (1640 V) that was 212% higher than that of the conventional HEMT (Conv-HEMT) and a low on-resistance (0.4 mΩ·cm2). Ultimately, the device achieved a high Baliga’s figure of merit (7.3 GW/cm2) among reported devices of similar size. A back-propagation (BP) neural network-based prediction model was trained to predict BV for enhanced efficiency in subsequent work. The model was trained and calibrated, achieving a correlation coefficient (R) of 0.99 and a prediction accuracy of 95% on the test set. The results indicated that the BP neural network model using the Levenberg–Marquardt algorithm accurately predicted the forward breakdown voltage of the HBB-HEMT, underscoring the feasibility and significance of neural network models in designing GaN power devices.

Funder

Natural Science Foundation of Sichuan Province

Sichuan Science and Technology Program

National Laboratory of Science and Technology on Analog Integrated Circuit under Project

Guangdong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3