Abstract
This paper deals with the DC offset currents generated by a platinum electrode matrix during biphasic stimulation. A fully automated test bench evaluates the nanoampere range DC offset currents in a realistic and comprehensive scenario by using platinum electrodes in a saline solution as a load for the stimulator. Measurements are performed on different stimulation patterns for single or dual hexagonal stimulation sites operating simultaneously and alternately. The effectiveness of the return electrode presence in reducing the DC offset current is considered. Experimental results show how for a defined nominal injected charge, the generated DC offset currents differ depending on the stimulation patterns, frequency, current amplitude, and pulse width of a biphasic signal.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献